A New Method for Gray Level Image Thresholding Using Spatial Correlation Features and Ultrafuzzy Measure

نویسندگان

  • M. Seetharama Prasad
  • E. Sreenivasa Reddy
چکیده

One of the most recent techniques employed to estimate an optimal threshold of a gray level image for segmentation is ultrafuzzy measures. In this paper, we introduce relative fuzzy membership degree (RFMD) taking spatial correlation among the pixels in the image into account. We also propose a novel thresholding technique by combining two-dimensional histogram, which was determined by using the gray value of the pixels and the local average gray value of the pixels using ultrafuzziness and RFMD. Compared to fuzzy membership degree, RFMD of type-II fuzzy sets and ultrafuzzy measure is able to better segment critical gray level images. It was observed that the outcome is so encouraging in objective and subjective perspectives over the existing method for all varieties of images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Automated Retinal Vessel Segmentation Using Entropic Thresholding Based Spatial Correlation Histogram of Gray Level Images

After highlighting vessel like structure by an appropriate filter in Matched Filter (MF) technique, thresholding strategy is needed for the automated detection of blood vessels in retinal images. For the purpose, we propose to use a new technique of entropic thresholding based on Gray Level Spatial Correlation (GLSC) histogram which takes into account the image local property. Results obtained ...

متن کامل

Image Bi-Level Thresholding Based on Gray Level-Local Variance Histogram

Thresholding is a popular method of image segmentation. Many thresholding methods utilize only the gray level information of pixels in the image, which may lead to poor segmentation performance because the spatial correlation information between pixels is ignored. To improve the performance of thresolding methods, a novel two-dimensional histogram—called gray level-local variance (GLLV) histogr...

متن کامل

Local Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching

Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013